SOHL-CAHL-TOA

Suppose a satellite is located in space at point S. In this view of Earth in the plane of the equator, the angle between the lines of sight at S is 50°. The radius of the Earth is 3,963 miles.

1847.17

What is the distance from S to the horizontal along the equator, that is, the length of a tangent from S to the

 $d(\text{Eun 25}) = (\frac{3943}{d})^{2} d = 3943 \cdot \text{Eun 65}^{\circ}$ $d = \frac{3943}{\text{Eun 25}} d = \frac{3$ Earth's surface along the equator?

How high is the satellite S above Earth's surface, that is, the length of a segment S to the closest point on Earth's surface along the equator?

(3463) + (8498.68) = = = =

C-r = ST 9377.256-3963

5414.256 mi

Measure of Central Angle is the same as intercepted

Chords - Line segment with endpoints on Circle.

Central Angle - 2 with Vertex at center of O Minor Arc - 0 and 180 OCXC180

Major Arc - /80 - 360

Semicircle → 180° Half Circle

Chords, Arcs, and Central Angles arc.

B

Central L's -> LOPB

minor are - AB CD

major arc - BOC DAC

RS=XZ

RS = XZ

Congruent Arcs

Relationships between Chords

Given the figure at the right.

Estimate the midpoint M on segment \overline{AB} and label that point.

Draw a line through O and M so that $\overline{OM} \perp \overline{AB}$.

What Three things happen?

- · Bisect Chard AM = BM
- · Bisect Intercepted arc AN = BN
- · Bisect Central Anyle (AOM = LBOM

SOH-CAH-TOH

Suppose that a given circle has a radius of 6 inches.

Congruent Chords

Have = intercepted

· Same Distance from conter

What is the length of a chord that has a central angle of 115°?

$$Sin 57.5^{\circ} = \frac{a}{6}$$
 $Chord$
 Ch

Angle measure

Angle measure

Threese tris function the perpendicular distance from the center of the circle to the chord?

Sin Cos ten difference of the circle to the chord?

$$d^{2}+4^{2}=6^{2}$$
 $m \times 2 = 83.6$ $d^{2}+16=36$

